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Abstract

In this paper an initial boundary value problem for a linear, nonhomogeneous axially moving string
equation will be considered. The velocity of the string is assumed to be constant, and the nonhomogeneous
terms in the string equation are due to external forces acting on the string. The Laplace transform method
will be used to construct the solution of the problem. It will turn out that the method has considerable,
computational advantages compared to the usually applied method of modal analysis based on
eigenfunction expansions.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The dynamics of axially moving materials have been studied by many researchers due to their
technological importance. Transversal vibrations of belt systems have been investigated for many
years. A lot of literature is devoted to this problem (see the reference lists in Refs. [1–5]). In this
paper a linear, nonhomogeneous equation for a moving string will be studied. The main goal of
this paper is to study the effectiveness of the Laplace transform method with respect to the
classical modal approach for these type of equations. The displacement of the moving string in
see front matter r 2005 Elsevier Ltd. All rights reserved.
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vertical direction will be determined by using the Laplace transform method. The solution for this
problem can be also constructed by using the method of eigenfunction expansions. This method
was developed for these types of problems by Meirovitch [6,7] and by Wickert and Mote [1]. Both
methods will be compared. The conditions under which bounded solutions exist will be derived,
and it will be shown for what kind of external forces internal resonances in the system will occur.

The following linear equation of motion for the string (moving in one direction with a constant
velocity V0) will be considered in this paper:

utt þ 2V0uxt þ ðV2
0 � c2Þuxx ¼ gðx; tÞ; 0oxol; t40, (1)

where uðx; tÞ is the displacement of the string in the vertical direction, V0 the string speed, c the
wave speed, x the coordinate in horizontal direction, gðx; tÞ the external force, t the time, and l the
distance between the pulleys.

In this paper the case V0oc is considered. At the pulleys it is assumed that there is no
displacement of the string in vertical direction. Eq. (1) can also be found in Ref. [2], but now
it is assumed that V0 is not necessarily small. The boundary and initial conditions for uðx; tÞ are
given by

uð0; tÞ ¼ uðl; tÞ ¼ 0; tX0,

uðx; 0Þ ¼ f ðxÞ; and utðx; 0Þ ¼ rðxÞ; 0oxol, ð2Þ

where f ðxÞ and rðxÞ represent the initial displacement and the initial velocity of the string,
respectively. It is assumed that the functions f ðxÞ and rðxÞ are sufficiently smooth such that a two
times continuously differentiable solution for the initial boundary value problem (1)–(2) exists.
2. Application of the Laplace transform method

The initial boundary value problem (1)–(2) for uðx; tÞ can readily be solved by applying the
Laplace transform method (with respect to time t) to Eqs. (1)–(2), yielding:

s2Uðx; sÞ � suðx; 0Þ � utðx; 0Þ þ 2V0ðsUxðx; sÞ � uxðx; 0ÞÞ

þ Uxxðx; sÞðV
2
0 � c2Þ ¼ G1ðx; sÞ, ð3Þ

Uð0; sÞ ¼ Uðl; sÞ ¼ 0, (4)

where Uðx; sÞ and G1ðx; sÞ are the Laplace transforms of uðx; tÞ and gðx; tÞ; respectively.
By dividing Eq. (3) by ðV2

0 � c2Þ and by rearranging terms in Eq. (3) it follows that:

Uxx þ
2V0s

V2
0 � c2

Ux þ
s2

V2
0 � c2

U ¼ Gðx; sÞ, (5)

where

Gðx; sÞ ¼
G1ðx; sÞ þ sf ðxÞ þ rðxÞ þ 2V0f xðxÞ

V2
0 � c2

. (6)
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The general solution of the homogeneous equation (that is, Eq. (5) with G � 0) is given by

Uðx; sÞ ¼ C1ðsÞ exp
�sx

V0 þ c

� �
þ C2ðsÞ exp

�sx

V0 � c

� �
,

where C1ðsÞ and C2ðsÞ are still arbitrary functions. The method of variation of parameters can be
used to find the particular solution of the nonhomogeneous equation (5). By using this method the
solution is found in the form:

Uðx; sÞ ¼ C1ðx; sÞ exp
�sx

V0 þ c

� �
þ C2ðx; sÞ exp

�sx

V0 � c

� �
, (7)

where C1ðx; sÞ and C2ðx; sÞ are given by

C1ðx; sÞ ¼
ðV2

0 � c2Þ

2sc

Z x

0

Gðx�; sÞ exp
x�s

V0 þ c

� �
dx� þ K1ðsÞ,

C2ðx; sÞ ¼ �
ðV2

0 � c2Þ

2sc

Z x

0

Gðx�; sÞ exp
x�s

V0 � c

� �
dx� þ K2ðsÞ,

where K1ðsÞ and K2ðsÞ are still arbitrary functions. The solution of the nonhomogeneous equation
(3) or (5) is given by

Uðx; sÞ ¼ K1ðsÞ exp
�sx

V0 þ c

� �
þ K2ðsÞ exp

�sx

V0 � c

� �

þ
ðV2

0 � c2Þ

2sc

Z x

0

Gðx�; sÞ exp
�sðx � x�Þ

V0 þ c

� �
� exp

�sðx � x�Þ

V0 � c

� �� �
dx�, ð8Þ

where K1ðsÞ and K2ðsÞ can be determined from the boundary conditions (4). So, finally the
following expression for Uðx; sÞ is found:

Uðx; sÞ ¼
ðV2

0 � c2Þ

2sc

Z l

0

Gðx�; sÞ exp
�sðl � x�Þ

V0 þ c

� �
� exp

�sðl � x�Þ

V0 � c

� �� �
dx�

exp
�sl

V0 þ c

� �
� exp

�sl

V0 � c

� �

� � exp
�sx

V0 þ c

� �
þ exp

�sx

V0 � c

� �� �

þ
ðV2

0 � c2Þ

2sc

Z x

0

Gðx�; sÞ exp
�sðx � x�Þ

V0 þ c

� �
� exp

�sðx � x�Þ

V0 � c

� �� �
dx�. ð9Þ

The inverse Laplace transform of Uðx; sÞ is given by

uðx; tÞ ¼
1

2pi

Z nþi1

n�i1

Uðx; sÞest ds ¼
X

n

Resðsn; x; tÞ for some n40 (10)

and where Res stands for the residue at s ¼ sn: To evaluate the inverse Laplace transform (10) the
poles of Uðx; sÞ and the order of these poles have to be determined in the complex s-plane. As long
as gðx; tÞ is not specified the poles due to G1ðx; sÞ will be unknown. For that reason three cases will
be considered: (i) gðx; tÞ ¼ 0; (ii) gðx; tÞ ¼ jðxÞ sinðotÞ with o ¼ ðpn�=lcÞðV2

0 � c2Þ for some fixed
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n� 2 Z; and (iii) gðx; tÞ ¼ jðxÞ sinðotÞ with o is not in the neighborhood of ðpn=lcÞðV2
0 � c2Þ for

all n 2 Z:

2.1. Case (i): gðx; tÞ ¼ 0

In this case the poles of Uðx; sÞ follow from (see Eq. (9))

s exp
�sl

V0 þ c

� �
� exp

�sl

V0 � c

� �� �
¼ 0. (11)

Now it should be observed that s ¼ 0 is not a pole of Uðx; sÞ since lims!0 Uðx; sÞ exists. All other
poles of Uðx; sÞ now follow from

exp
�sl

V0 þ c

� �
� exp

�sl

V0 � c

� �
¼ 0

and are given by

sn ¼
pn

lc
ðV2

0 � c2Þi, (12)

with n 2 Znf0g: It should be observed that these poles are all simple. The solution of the initial
boundary value problem (1)–(2) with gðx; tÞ ¼ 0 now easily follows from Eq. (10), yielding

uðx; tÞ ¼
X1
n¼1

an cos
pnðV2

0 � c2Þt

lc

� �
cos

pnðV0 þ cÞx

lc

� �
� cos

pnðV0 � cÞx

lc

� �� ���

þ sin
pnðV2

0 � c2Þt

lc

� �
sin

pnðV0 þ cÞx

lc

� �
� sin

pnðV0 � cÞx

lc

� �� ��

þ bn cos
pnðV2

0 � c2Þt

lc

� �
sin

pnðV0 þ cÞx

lc

� �
� sin

pnðV0 � cÞx

lc

� �� ��

� sin
pnðV2

0 � c2Þt

lc

� �
cos

pnðV0 þ cÞx

lc

� �
� cos

pnðV0 � cÞx

lc

� �� ���
,

where

an ¼
ðV2

0 � c2Þ

c

1

2lc

Z l

0

f ðx�Þ cos
ðV0 � cÞpnx�

lc

� �
� cos

ðV0 þ cÞpnx�

lc

� �� �
dx�

 

þ
1

2

Z l

0

rðx�Þ þ 2V0f xðx
�Þ

pnðV2
0 � c2Þ

sin
ðV0 � cÞpnx�

lc

� �
� sin

ðV0 þ cÞpnx�

lc

� �� �
dx�

!
,

bn ¼
ðV2

0 � c2Þ

c

 
1

2lc

Z l

0

f ðx�Þ sin
ðV0 � cÞpnx�

lc

� �
� sin

ðV0 þ cÞpnx�

lc

� �� �
dx�:

�
1

2

Z l

0

rðx�Þ þ 2V0f xðx
�Þ

pnðV2
0 � c2Þ

cos
ðV0 � cÞpnx�

lc

� �
� cos

ðV0 þ cÞpnx�

lc

� �� �
dx�

!
.
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2.2. Case (ii): gðx; tÞ ¼ jðxÞ sinðotÞ; the resonant case

In this case it is assumed that o is equal to an eigenfrequency of the axially moving string
(Fig. 1), that is, o ¼ ðpn�=lcÞðV2

0 � c2Þ for some fixed n� 2 Z: The Laplace transform of gðx; tÞ in
this case is

G1ðx; sÞ ¼
o

s2 þ o2
jðxÞ.

In Eq. (9) Gðx; sÞ is now given by Gðx�; sÞ ¼ ojðx�Þ=ððs2 þ o2ÞðV2
0 � c2ÞÞ þ hðx�; sÞ; where

hðx�; sÞ ¼ ðsf ðx�Þ þ rðx�Þ þ 2V0 f x� ðx�ÞÞ=ðV2
0 � c2Þ: And so, Uðx; sÞ can be written as Uðx; sÞ ¼

Aðx; sÞ þ Bðx; sÞ þ Dðx; sÞ þ Eðx; sÞ; where

Aðx; sÞ ¼
ðV2

0 � c2Þ

2sc

o
Z l

0

jðx�Þ exp
�sðl � x�Þ

V0 þ c

� �
� exp

�sðl � x�Þ

V0 � c

� �� �
dx�

ðs2 þ o2ÞðV2
0 � c2Þ exp

�sl

V0 þ c

� �
� exp

�sl

V0 � c

� �� �

� � exp
�sx

V0 þ c

� �
þ exp

�sx

V0 � c

� �� �
, ð13Þ

Bðx; sÞ ¼
ðV2

0 � c2Þ

2sc

Z l

0

hðx�; sÞ exp
�sðl � x�Þ

V0 þ c

� �
� exp

�sðl � x�Þ

V0 � c

� �� �
dx�

exp
�sl

V0 þ c

� �
� exp

�sl

V0 � c

� �� �

� � exp
�sx

V0 þ c

� �
þ exp

�sx

V0 � c

� �� �
, ð14Þ

Dðx; sÞ ¼
o

2scðs2 þ o2Þ

Z x

0

jðx�Þ exp
�sðx � x�Þ

V0 þ c

� �
� exp

�sðx � x�Þ

V0 � c

� �� �
dx�, (15)

Eðx; sÞ ¼
ðV2

0 � c2Þ

2sc

Z x

0

hðx�; sÞ exp
�sðx � x�Þ

V0 þ c

� �
� exp

�sðx � x�Þ

V0 � c

� �� �
dx�. (16)

The inverse Laplace transform of Uðx; sÞ is given by

LinvðUðx; sÞÞ ¼ LinvðAðx; sÞÞ þ LinvðBðx; sÞÞ þ LinvðDðx; sÞÞ þ LinvðEðx; sÞÞ. (17)
Fig. 1. An axially moving string.



ARTICLE IN PRESS

W.T. van Horssen, S.V. Ponomareva / Journal of Sound and Vibration 287 (2005) 359–366364
In Eq. (17), LinvðBðx; sÞÞ and LinvðEðx; sÞÞ only depend on the initial values f ðxÞ and rðxÞ and
already have been determined in case (i) with gðx; tÞ ¼ 0: So, only LinvðAðx; sÞÞ and LinvðDðx; sÞÞ
have to be calculated. It should be observed that these inverse Laplace transforms only depend on
gðx; tÞ: Furthermore, it should be observed that Aðx; sÞ is the product of o=ðs2 þ o2Þ and another
term (following from Eq. (13)), and so the inverse Laplace transform of Aðx; sÞ can be determined
by using the convolution integral, that is,

LinvðAðx; sÞÞ ¼

Z t

0

sinðoðt � tÞÞ
X

n

Resðsn; x; tÞdt, (18)

where sn is given by Eq. (12). Finally, if o ¼ ðpn�=lcÞðV2
0 � c2Þ for a fixed n� 2 Z it follows that

LinvðAðx; sÞÞ is

LinvðAðx; sÞÞ ¼
F1n� ðxÞ

2
t sinðon�tÞ þ

F2n� ðxÞ

2

sinðon�tÞ

on�
� t cosðon�tÞ

� �

þ
X1

n¼1;najn�j

F1nðxÞ

2

1

on� � on

ðcosðontÞ � cosðon�tÞÞ

��

þ
1

on� þ on

ðcosðontÞ � cosðon�tÞÞ

�

þ
F2nðxÞ

2

1

on� þ on

ðsinðontÞ þ sinðon�tÞÞ

�

þ
1

on� � on

ðsinðontÞ � sinðon�tÞÞ

��
, ð19Þ

where

F1nðxÞ ¼ wn cos
pnðV0 þ cÞx

lc

� �
� cos

pnðV0 � cÞx

lc

� �� �

þ pn sin
pnðV0 þ cÞx

lc

� �
� sin

pnðV0 � cÞx

lc

� �� �
, ð20Þ

F2nðxÞ ¼ wn sin
pnðV0 þ cÞx

lc

� �
� sin

pnðV0 � cÞx

lc

� �� �

� pn cos
pnðV0 þ cÞx

lc

� �
� cos

pnðV0 � cÞx

lc

� �� �
, ð21Þ

wn ¼
1

2c

Z l

0

jðx�Þ

pn
sin

ðV0 � cÞpnx�

lc

� �
� sin

ðV0 þ cÞpnx�

lc

� �� �
dx�, (22)

pn ¼ �
1

2c

Z l

0

jðx�Þ

pn
cos

ðV0 � cÞpnx�

lc

� �
� cos

ðV0 þ cÞpnx�

lc

� �� �
dx�. (23)
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It can be seen from Eq. (13) that if n ¼ n� then there are two poles of order two (one in s ¼ ion� ;
and one in s ¼ �ion�). To calculate LinvðDðx; sÞÞ it should be observed that s ¼ 0 is not a pole
as lims!0 Dðx; sÞ exists. So the inverse Laplace transform for Dðx; sÞ is

LinvðDðx; sÞÞ ¼
ðV2

0 � c2Þ

co
1

2
cosðotÞ

Z x

0

jðx�Þ cos
oðx � x�Þ

V0 þ c

� �
� cos

oðx � x�Þ

V0 � c

� �� �
dx�

�

þ
1

2
sinðotÞ

Z x

0

jðx�Þ sin
oðx � x�Þ

V0 þ c

� �
� sin

oðx � x�Þ

V0 � c

� �� �
dx�

�
. ð24Þ

It can be seen that only LinvðAðx; sÞÞ contributes to unbounded terms in the solution.

2.3. Case (iii): gðx; tÞ ¼ jðxÞ sinðotÞ; the nonresonant case

Let on ¼ ðpn=lcÞðV2
0 � c2Þ; n 2 Z be the natural frequencies of an axially moving string and let

o be not in a neighborhood of any of these frequencies on:
For LinvðAðx; sÞÞ it then follows that

LinvðAðx; sÞÞ ¼
X1
n¼1

F1nðxÞ

2

1

o� on

ðcosðontÞ � cosðotÞÞ þ
1

oþ on

ðcosðontÞ � cosðotÞÞ

� ��

þ
F2nðxÞ

2

1

oþ on

ðsinðontÞ þ sinðotÞÞ þ
1

o� on

ðsinðontÞ � sinðotÞÞ

� ��
, ð25Þ

where F1nðxÞ and F2nðxÞ are given by Eqs. (20) and (21), respectively. LinvðDðx; sÞÞ is again given
by Eq. (24). In this case there are no unbounded terms in the solution uðx; tÞ: Obviously,
unbounded solutions will occur when gðx; tÞ contains terms j1ðxÞ sinðotÞ and/or terms
j2ðxÞ cosðotÞ for which o is equal to an eigenfrequency on:
3. Conclusions and remarks

In this paper an initial boundary value problem for a linear, nonhomogeneous axially moving
string equation has been studied. The velocity of the string is assumed to be constant, and the
nonhomogeneous terms in the string equation are due to external forces acting on the string. To
solve the initial boundary value problem the Laplace transform method had been used in this
paper. There is also another, well-known method to solve this problem which is the modal
analysis based on eigenfunction expansions. This method has been introduced in Refs. [1,6,7], and
is used nowadays frequently for these types of problems (see for instance Refs. [3,4]). To apply this
method an operator notation has to be introduced, an inner product has to be defined, an
eigenvalue problem has to be solved, and orthonormality relations have to be determined.
Altogether this method is rather complicated to apply to these types of problems. For that reason
in this paper it is proposed to apply the Laplace transform method to these types of problems.
When this method is applied poles (and the order of the poles) have to be determined, residues
have to be calculated, and Cauchy’s theorem has to be used (that is, integrals have to be evaluated
by using the theory of complex variables). To construct the solution by using the Laplace
transform method is rather straightforward and seems to be more easy than the use of the method
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of modal analysis based on eigenfunction expansions. Moreover, the Laplace transform method
is nowadays well-described in elementary textbooks on partial differential equations (see for
instance Ref. [8]). In forthcoming papers it will be shown that the Laplace transform method can
efficiently and easily be applied to weakly perturbed or weakly nonlinear (axially moving) string
equations.
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